Objective
Today, we're building on our knowledge of Arrays by adding another dimension. Check out the Tutorial tab for learning materials and an instructional video!
Context
Given a 2D Array, :
1 1 1 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
We define an hourglass in to be a subset of values with indices falling in this pattern in 's graphical representation:
a b c
d
e f g
There are hourglasses in , and an hourglass sum is the sum of an hourglass' values.
Task
Calculate the hourglass sum for every hourglass in , then print the maximum hourglass sum.
Input Format
There are lines of input, where each line contains space-separated integers describing 2D Array ; every value in will be in the inclusive range of to .
Constraints
Output Format
Print the largest (maximum) hourglass sum found in .
Sample Input
1 1 1 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 2 4 4 0
0 0 0 2 0 0
0 0 1 2 4 0
Sample Output
19
Explanation
contains the following hourglasses:
1 1 1 1 1 0 1 0 0 0 0 0
1 0 0 0
1 1 1 1 1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0
0 0 2 0 2 4 2 4 4 4 4 0
1 1 1 1 1 0 1 0 0 0 0 0
0 2 4 4
0 0 0 0 0 2 0 2 0 2 0 0
0 0 2 0 2 4 2 4 4 4 4 0
0 0 2 0
0 0 1 0 1 2 1 2 4 2 4 0
The hourglass with the maximum sum () is:
2 4 4
2
1 2 4
Solution:
arr = []
for _ in range(6):
tmp = [int(x) for x in str(input()).split(" ")]
arr.append(tmp)
maximum = -9 * 7
for i in range(6):
for j in range(6):
if j + 2 < 6 and i + 2 < 6:
result = arr[i][j] + arr[i][j + 1] + arr[i][j + 2] + arr[i + 1][j + 1] + arr[i + 2][j] + arr[i + 2][j + 1] + arr[i + 2][j + 2]
if result > maximum:
maximum = result
print(maximum)
0 Comments