Objective
Today, we're building on our knowledge of Arrays by adding another dimension. Check out the Tutorial tab for learning materials and an instructional video!

Context
Given a  2D Array:

1 1 1 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

We define an hourglass in  to be a subset of values with indices falling in this pattern in 's graphical representation:

a b c
  d
e f g

There are  hourglasses in , and an hourglass sum is the sum of an hourglass' values.

Task
Calculate the hourglass sum for every hourglass in , then print the maximum hourglass sum.

Input Format

There are  lines of input, where each line contains  space-separated integers describing 2D Array ; every value in  will be in the inclusive range of  to .

Constraints

Output Format

Print the largest (maximum) hourglass sum found in .

Sample Input

1 1 1 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 2 4 4 0
0 0 0 2 0 0
0 0 1 2 4 0

Sample Output

19

Explanation

 contains the following hourglasses:

1 1 1   1 1 0   1 0 0   0 0 0
  1       0       0       0
1 1 1   1 1 0   1 0 0   0 0 0

0 1 0   1 0 0   0 0 0   0 0 0
  1       1       0       0
0 0 2   0 2 4   2 4 4   4 4 0

1 1 1   1 1 0   1 0 0   0 0 0
  0       2       4       4
0 0 0   0 0 2   0 2 0   2 0 0

0 0 2   0 2 4   2 4 4   4 4 0
  0       0       2       0
0 0 1   0 1 2   1 2 4   2 4 0

The hourglass with the maximum sum () is:

2 4 4
  2
1 2 4
Solution:
arr = []

for _ in range(6):
    tmp = [int(x) for x in str(input()).split(" ")]
    arr.append(tmp)

maximum = -9 * 7

for i in range(6):
    for j in range(6):
        if j + 2 < 6 and i + 2 < 6:
            result = arr[i][j] + arr[i][j + 1] + arr[i][j + 2] + arr[i + 1][j + 1] + arr[i + 2][j] + arr[i + 2][j + 1] + arr[i + 2][j + 2]
            if result > maximum:
                maximum = result

print(maximum)